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Abstract. This paper deals with dynamical systems depending on a slowly varying parameter. We
present several physical examples illustrating memory effects, such as metastability and hysteresis,
which frequently occur in these systems. The examples include the delayed appearance of
convection rolls in Rayleigh-&ard convection with slowly varying temperature gradient, scaling

of hysteresis area for ferromagnets in a low-frequency magnetic field, and a pendulum on a rotating
table displaying chaotic hysteresis. A mathematical theory is outlined, which allows us to prove
the existence of hysteresis cycles, and determine related scaling laws.

1. Introduction

There exist many instances where the dynamics of a system depends on a parameter which
varies slowly in time. This parameter is often controllable by the experimentalist, who can
modify it at will. A well known example of this situation is that of a ferromagnet on which is
imposed a low-frequency magnetic field. One can also think of chemical reactions occurring in
areactor in which the flux of the injected chemical substances is varying slowly, or the Couette—
Taylor experiment in hydrodynamics where the speed of rotation of the inner cylinder is slowly
modulated. In other circumstances, the parameter is not controllable, but certainly influences
the dynamics of the system of interest. As examples of this situation we could mention the
impact of solar light on the thermal convection in the atmosphere, or the seasonal (or even
climatic) effect on the dynamics of populations.

One of the most interesting phenomena observed in systems with an adiabatically varying
parameter is the familiar one of hysteresis. Recently, there has been a renewal of interest in this
old problem, both from a theoretical and an experimental point of view. Several authors [1-4]
have particularly analysed properties of the hysteresis cycle, such as its area, which appears to
scale in a nontrivial way with the adiabatic parameter.

In this article, we concentrate on dynamical systems with a finite number of degrees of
freedom, depending on a parameter in such a way that the system undergoes bifurcations
when the parameter is considered to be static. The static (or ‘frozen’) situation corresponds
to measurements made, in principle during very long times, at successive fixed values of the
parameter. We then ask what is happening when the parameter is varying slowly in time,
instead of being kept fixed. This question is closely related to the opposite one: can the static
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bifurcation diagram be determined experimentally by varying the parameter slowly in time (a
possible temptation for the impatient experimentalist)?

We have recently developed a coherent mathematical framework to deal with adiabatic
systems, in particular to show existence of hysteresis cycles and determine their scaling laws
[5,6]. The purpose of this article is to explain these methods by illustrating them on a few
concrete physical examples.

We begin, in section 2, by presenting the most important features of one-dimensional (1D)
systems, which are illustrated by a few generic examples. We discuss in particular a simple
geometric method to determine scaling laws near bifurcation points.

In section 3, we use the Lorenz model to illustrate the phenomenon of bifurcation delay,
where the system remains in metastable equilibrium nearmaiori unstable solution. When
translated into the language of Rayleiglerard (RB) convection, this phenomenon means that
the slow and periodic variation of the temperature gradientin time leads to a delayed appearance
of convection rolls and to hysteresis. The Lorenz model being a good approximation close to
the instability threshold, since it contains two dominant modes of the bifurcation, this delay
should be observable in the real RB convection. To explain the delay, we introduce two new
methods especially designed fordimensional £D) systems: dynamic diagonalization and
adiabatic manifolds.

In section 4, we present a simple mean-field model for the dynamics of a ferromagnet in
a slowly oscillating magnetic field. In the 1D case, we discuss the concept of dynamic phase
transition introduced in [7], and derive a scaling law for the hysteresis area. In the 2D case, we
examine the effect of anisotropy on the mechanism of magnetization reversal and the shape of
hysteresis cycles.

In section 5, we discuss a simple mechanical system (which was introduced in [8]),
displaying chaotic instead of periodic hysteresis. This phenomenon depends only on a few
qualitative features of the system, and should be observable in a larger class of nonlinear
oscillators including inertia and involving a symmetry-breaking bifurcation.

Finally, section 6 is dedicated to some examples of the effect of eigenvalue crossings.
These crossings give rise to an effective interaction between otherwise independent modes,
which is essential in the sense that it cannot be eliminated by a change of variables. The
interaction may, however, be delayed in certain cases.

Throughout this text, we use the following mathematical setting. The ‘frozen’ dynamical
system is supposed to be described by a family of ordinary differential equations

(;—TzF(x,)») xeR" relR. Q)
The associated adiabatic system is given by

dx

5 = Faaen) )

wherel(7) is a given function, andis the smalldiabatic parameterlt is useful to introduce
theslow timer = ¢, so that (2) can be rewritten as

) ©)
dec

or, in short formgx = f(x, t). We denote by-|-) the usual scalar product R" and by]|| - ||
the Euclidean norm.

There is a large literature on singular perturbed problems of this type. Results on linear
systems can be found in [9]. For a review of results on dynamic bifurcations, see [10]. In
particular, the phenomenon of bifurcation delay has been rigorously analysed in two important
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papers by Neishtadt [11, 12]. Certain hysteresis phenomena in slow—fast systems similar to
the Van der Pol equation have been analysed in [13].

The methodology developed in [5] to analyse adiabatic equations of the form (3) is
especially dedicated to the search of hysteresis cycles, and of the way their properties scale
with ¢. It relies both on existing and new results, including in particular the following.

o If x*(1) is a hyperbolic equilibrium branch of (1), one constructs a particular solution of
(3) tracking this branch at a distance of ordeSee [14, 15] for related results.

e The motion near this particular solution is analysed by local methods such as dynamic
diagonalization of the equation, and the construction of invariant manifolds (see section 3).
Results in this direction have been obtained in [9] and [14]. In [5], we extend them to a
more constructive method, allowing us to determine solutions up to exponentially small
order ing (see [6] for a summary).

e The motion near bifurcation points, which is responsible for hysteresis and nontrivial
scaling laws, is first simplified by a centre manifold reduction. We introduced a new
method to analyse the resulting low-dimensional equations from a qualitative point of
view (see section 2).

2. 1D systems

In this section, we will consider 1D adiabatic equations of the form
ex = F(x, A1) = f(x, 1) x, T €R 4)

where the dot denotes derivation with respect tand f (x, 7) is assumed to be an analytic
real-valued function (weaker results as those stated below hold for differentiable functions).

The static bifurcation diagram of (4) is obtained by determining the solutiofiéfr) =
0, which are generically curves subdividing the plane into regions wlieie positive or
negative. Letc*(t) be such an equilibrium curve. The implicit function theorem tells us that
if the linearizationa(r) = 9, f (x*(t), t) does not vanish, then*(z) is a smooth curve. It
corresponds to stable solutions:ifr) is negative, and to unstable ones:6t) is positive.

In such a situation, one can prove the existence of a particular salitigof the adiabatic
equation (4) tracking the curwe (t) at a distance of order.

(1) = x* (1) + O(e). (5)
Moreover, this solution admits an asymptotic power series iwhich does not converge in
general, but admits, however, an optimal truncation at exponentially small order:
N(e)
x(r) = x*(v) + Z xj(0)ed + OEeV) N(s) = O(1/e). (6)
j=1
We call x(tr) an adiabatic solutionassociated with the equilibrium branati(r). Other
solutions of (4) are attracted or repelled exponentially fast by adiabatic ones, and tend to switch
between the neighbourhoods of different equilibrium branches in a time of grbher|. As
long as there are no bifurcation points, the solutions thus remain most of the time close to
equilibria, and there is no hysteresis in the system.

The crucial point to obtain the formula (6) is to prove the existence of the exponential
bound uniformly in time. This can be done using an iterative scheme introduced by Neishtadt
in [11]. Once the existence of this bound is known, it is easy to compute the coefficjénts
by mere substitution into equation (4).

Let us now consider the effect of bifurcations. At these special points, several equilibrium
branches may meet, causing the solutions to choose between several possible directions, which
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Figure 1. Newton’s polygons for the most generic bifurcations discussed in the text. Dots mark
points for which the Taylor coefficients,, # 0. Slopes of segments correspond to the possible
exponentsy of equilibrium branches through the bifurcation point. The ordinate at 1 of these
segments is the exponembf the linearization. In more complicated cases, the polygons may have
more segments, each one describing a possible bifurcation branch.

is the basic mechanism of hysteresis. Moreover, equilibrium branches are in general no longer
tracked at a distance of orderbut at a distance scaling in some other, nontrivial way with
which we now show how to compute.

If the origin is a bifurcation point off, we can write in some neighbourhood

fx, )= Z Comx"T™ coo = c10=0. (7
n,m>=0

Assume thaf (x, ) admits an equilibrium branch scalingagt) ~ |t|? (we use this notation
toindicate that_|7]? < x* (1) < c+|7]9, wherec.. are positive constants independent aind
¢). A standard result of bifurcation theory states thatis necessarily equal to the slope of a
segment oNewton’s polygonThis polygon is constructed as the convex envelope of the set
of points(n, m) € N2 such that,,, # 0, completed by a horizontal and a vertical (figure 1).
The linearizatioru(t) = 9, f (x*(z), ) scales generically gs|?, wherep is the ordinate at
1 of the tangent to Newton'’s polygon with slope .

These two easily determined numberaindg are usually sufficient to characterize the
scaling behaviour at leading order én In fact, different behaviours take place in mmer
region |z| < ¢¥7*1 and in anouter region|z| > ¢YP*1. In particular, ifx*(t) ~ |t|? is a
decreasing stable branch arriving at the bifurcation point, above whistmegative, one can
show that

R0 - x'(0) ~ {8'f'q_p_l fore < —etrtt
gd/r*t for —e¥/r1 < 7 < 0.

(8)

The essential idea to obtain this formula is to expand the equation in a neighbourhood of the
bifurcating equilibrium branch, and to show that the dynamics is dominated by terms linear in
x —x*(1).

Combining a local analysis around bifurcation points with a global analysis, which is
usually easy in one dimension, one can determine the qualitative properties of dynamics.
In particular, if A(t) is a periodic function, one can construct the Poiécarap (which
is necessarily a monotonous function) in order to prove existence of hysteresis cycles and
determine their scaling laws.

Let us illustrate this procedure on the simple model equation given by

F(x, A, ) = —pux — x>+ . 9)

Mathematically, this function is a generic two-parameter perturbation of the vectorfi€ld
[16]. Physically, it describes the overdamped motion of a particle in a Ginzburg—Landau
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Figure 2. (a) Orbits (light curves), in théx, x)-plane, of the systemi = —ux — x3 + A(1),

for p = 1 ande = 10-%2,1072 and 10°%2. The initial condition is marked by a small square.
Steeper curves correspond to smaller values. dEach solution is attracted by a periodic orbit,
enclosing an area of order After a short transient, it tracks the equilibrium cunvel) (heavy
curve) at a distance of order(actually, in the case = 10-%2, the asymptotic orbit cannot be
distinguished from this curve)b) Same asd), but foru = 0. The heavy curve is the equilibrium
curvex*(x) = A3, For clarity, only the asymptotic motion is shown (light curves) At 0, the
periodic orbit is at a distance of ordel® of the equilibrium point, and it encloses an area of order
£4/5

potential
D(x, A, u) = %ux2+711x4—)»x (10)

whereu = T — T, represents the difference between the temperature and its critical value, and
A is an external field. The quartic potential described by the first two terms is fairly generic
in physical systems presenting the symmatny>- —x, while the linear term is the simplest
possible asymmetric perturbation.

We begin with the situation whereg = 1 is fixed, andi(r) = sint is slowly
oscillating. The equatio' (x, A, 1) = 0 admits a single, stable equilibrium branch(}),
given implicitly by x*(1)% + x*(,) = A. All solutions are attracted by a periodic solution
x(t) = x*(\ (1)) + O(¢), enclosing an area of order(figure 2@)). In the adiabatic limit
¢ — 0, this area vanishes and there is no hysteresis.

If # = 0 andi(r) = sint, the unique equilibrium branck*(1) = AY2 admits the
origin as a bifurcation point. Using Newton’s polygon or a direct calculation, we find that the
exponents determining the scaling behaviouregatee % andp = % (figure 1@)). The orbits
are attracted by a periodic one, crossingthaxis at a distance of ordet’® from the origin,
and enclosing an area

A(e) ~ £%° (12)
(figure 2p)). The cycle still collapses with*(A(7)) in the adiabatic limit, but with a much
slower rate. These exponents have been found in [4, 17] using other methods (which are less
general than ours).

If w = —1 andxi(r) = sint, there are two bifurcation points &t-A., Fx.), where
Le = /4/27 andx. = /1/3. Two stable branches; (1) and one unstable branatj(i)
meet at these bifurcation points (figureag( Since they are crossed with nonzero velocity,
Newton'’s polygon shows that the associated exponentg arep = % (figure 1p)). In fact,
close to these points, the dynamics in translated coordinates is governed by the equation

ey = —t — y? + higher order terms. (12)
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Figure 3. (a) Same as figure 2, for = —1. The periodic orbits (light curves, for the three different
values ofe) lie at a distance at mog2(¢1/3) from a limiting hysteresis cycle, composed of stable
equilibrium branches and two vertical lines. The heavy curve represents the stable static equilibria
x%(1), the broken curve is the unstable brangli). The enclosed area.ié(e) = A(0) +O(e2/3).

(b) Hysteresis cycle of the equatien = —u(t)x — x3. The initial condition is marked by a small
square, heavy curves denote stable (full) and unstable (broken) equilibria. See also figure 4.

Solutions cross the—axis aty ~ /3. Using the scaling = ¢¥/3z andtr = ¢%3¢, one shows
that y remains of ordee/3 until a timet* &~ ¢%2, and then quickly leaves the bifurcation
region to jump on the other stable branch. The orbits are attracted by a hysteresis cycle with
area satisfying

A(e) — A(0) ~ £2/3 (13)
where A(0) = % is the area situated between(x) andx* (1) for —i. < A < A.. This time,
the hysteretic behaviour persists in the adiabatic limit. The main contribution of g¥deo
the excess area comes from the delayed jump. The scaling law (13) was also obtained in [3]
using an exact solution of (12) (without the higher order terms).

As a final example, let us consider the situation whiere 0 andu(7) is the varying
parameter. The static bifurcation diagram displays a pitchfork bifurcation at the origin,
involving the branches = 0 andx = +./—u, for whichg = % andp = 1 (figure 1¢)).

An important new phenomenonlifurcation delay nearx = 0, the dynamics is essentially
governed by the linearized equation

ex = —u(t)x = x(1) = exp[ - %/ u(s)dsi|x(to). (14)

Starting at a time wherg > 0, x(r) remains exponentially small as long as the integral in
(14) is negative, which is true for a whileeyondthe instant where. changes sign. If the
solution finally jumps on the stable branch agnds increased again, this branch is followed
adiabatically, which leads to hysteresis (figurB)B(The area of the cycle follows the scaling
law

A(e) — A(0) ~ %4 (15)

where.A(0) depends on the bifurcation delay time. The phenomenon of bifurcation delay can
be interpreted ametastability instead of jumping directly to one of the stable branches created
by spontaneous symmetry breaking, the solution tracks the unstable equilibrium branch for a
macroscopic time (this time does not decrease to zeto-as0).

These examples indicate that 1D systems are relatively well understood. In fact, our
method to determine scaling laws is general, and quite straightforward to apply to other
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bifurcations than the special cases described here. Moreover, one can expect that when a
single (non—degenerate) mode of a larger system undergoes bifurcation, the dynamics of the
associated adiabatic system will be governed by an effective 1D equation, describing the
motion of this particular mode, which explains why the same scaling laws are observed for
more complicated systems. The Lorenz model discussed in the next section illustrates this
reduction of variables.

3. Bifurcation delay in the Lorenz model

Let us now turn to the behaviour of higher-dimensional systems
ex = F(x, A1) = f(x, 1) xeR" ek (16)

It can be shown that adiabatic solutions with an expansion of the form (6) still existin the vicinity
of hyperbolicequilibria, i.e. branches of equilibrium points around which the linearization of
f has no purely imaginary eigenvalues.

The behaviour of neighbouring solutions is far more complicated to analyse than in the 1D
case. One can, however, obtain valuable informations by applying the following procedure:

e One starts by analysing the equation linearized around the time-dependent adiabatic
solution, which takes the forax = A(z)x. Such equations have been particularly studied
by Wasow [9], and are also of great importance in quantum mechanics. We extended these
methods to allow for a complete diagonalization by a linear, time-dependent change of
variables.

e Once the linear part has been diagonalized, it is important to deal with nonlinear terms,
for instance to delineate the boundary of basins of attraction. To do this, we generalize
the stable manifold theorem in order to construct invariant manifolds near hyperbolic
equilibria. This allows us to choose coordinates in such a way that stable and unstable
manifolds become time independent, and to reduce the dimension of the system.

We illustrate these techniques on the Lorenz model with slowly varying temperature
gradientr(t):
ex1 =0 (x2 — x1)
exo = r(T)xy — X2 — X1X3 a7
ex3 = —bxz + x1x2
where we assume thato > 0. This model has been introduced as an approximation to
Rayleigh—Benard convection, but also describes other systems such as lasers. It is well known
that if r < 1 is fixed, the origin is a globally asymptotically stable fixed point, whereas when
r > 1,the originis hyperbolic and two new equilibtia = (£/b(r — 1), £/b(r — 1), r—1)
appear, which correspond physically to convection rolls.
We will study this system when(z) is slowly oscillating around = 1, and stays well
below the chaotic region. It can be written in compact form
ex = A(t)x +b(x) (18)

whereb(x) is quadratic. Note that the identically zero function is a particular solution of this
equation. The matrid (t) has three eigenvalues

a12(t) = —3@+D £s5(1) az=-b () =3/ +D2+4o(r(v) — ). (19)

The eigenvalues, andas are always negative, white (t) has the same sign aér) — 1. We
thus expect that the motion will essentially follow the eigenspace @f). For this reason,
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we will construct a change of variables isolating this particular direction. To do this, we begin
by searching a linear transformation which should diagonalize the linear part of (18). To this
end, we observe that ¥(z; ¢) is a matrix satisfying

£S=AS—SD (20)
whereD(z; ¢) is diagonal, then the change of variables- Sy transforms (18) into
ey = D(1)y + S71b(Sy). (21)

The key point is that we can prove the existence of a bounded solution of (20), admitting
asymptotic series

S(t;e) = So(v) +eS1(t) +£28x(T) + - - -
D(t; &) = Do(t) +£D1(t) + £2Da(T) + - - -

which can be truncated to exponentially small order, just as the adiabatic solution (6)t.
In particular, So(7) is the matrix diagonalizingd statically, and the entries dDy(z) are
eigenvalues ofi(t). The proof uses the fact tha{(t) # ax(7).

In the specific case of the Lorenz equations, a linear transformation given to leading order

by

(22)

o—1
x1=0(y+z1)+0() x2= T(y +z) +s(y —z0)+0() xz3=2 (23)
yields the equation

ey =di(r)y +b1(y, 2, T)

ez = Da(1)z + ba(y, 2, T)
wheredi(t) = ai(r) + O(g), Do(7) is diagonal with entriea, () + O(e) andas, andby, b,
are quadratic.

In order to deal with the nonlinear terms, we introduce invariant manifolds. Consider the
partial differential equation

€0:v(y, ) = Da(T)v(y, T) +ba(y, v, ) — dyv(y, D)[du(r)y + b1(y, v, 7)]. (25)

It can be shown that this equation admits, in a neighbourhood¢ of 0, a solution
v(y, ) = O(y?). Whenr > 1, it lies at a distance of orderfrom the instantaneous unstable
manifold of the origin, but it can be continued to times where 1. The change of variables
7z = ¢ +v(y, 1) transforms the second equation of (24) into

el = [Da(7) + Ba(y, £, D¢ (26)
whereg, is of order|y| + ||¢]|. This equation admits = 0 as invariant manifold. A similar
change of variableg = n + u(¢, t) transforms the first equation into

en = [di(r) + Pr(n, ¢, D]n (27)

defining a stable manifold separating the basins of attracti@n eindC_.

SinceD; has negative eigenvalues, one easily showstthgtgoes to zero exponentially
fast. Thus the effective dynamics will take place on the invariant manifeldv(y, t), where
it is governed by the scalar equation

ey = di(r)y +h(1)y> + O(°)

o2 (o-1 (28)
h(r):—Tu( > +S>+O(8)

(24)

T These matrices are not unique, since every colums$ @én be multiplied by a function of time, which will of
course affect terms of orderin D.
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Figure 4. Rotation frequency of convection rolkg as a function of the periodically varying
temperature differencein the Lorenz model. After a first transient cycle, the motion settles on a
hysteresis cycle, on whichy increases rapidly and decreases slowly.

(y = n on the unstable manifold = 0). Asr(r) is varied periodically around = 1,
di(t) = a1(tr) + O(¢) changes sign. The situation is thus very similar to the last example
of section 2. Assume thak () becomes negative a§, positive atr;, and negative again at
70+ 1. Asymptotically, the solution will stay close to the origin figr+»n < © < 7 +n, where

7 > 11 is thedelay timedefined by the relation

/-r di(t)dr =0 (29)

To
(this time exists if the average df(t) over one period is positive, otherwise solutions stay
indefinitely close to the origin). Far+n < t < 19 +n + 1, the asymptotic solution follows
C. or C_ adiabatically. Thus the bifurcation delay leads once agahytberesigfigure 4).
As in figure 3p), this memory effect is due to metastability. For a given value loétween 1
andr., the asymptotic state of the system does not depend on the valuwdarfe, but also on
whether it is increasing or decreasing. This hysteretic behaviour persists in the adiabatic limit
e — 0.

Whenr (1) is varied back and forth (at least whedoes not become too large), the solution
always follows thesameequilibrium (which one it chooses depends on the initial condition).
In the case of Rayleigh-@hard convectiong; measures the rotation frequency of convection
rolls. Whenr () is increased, these rolls will appear suddenly, with a positive frequency, at
somer, = r(t) > 1. Whenr(z) is decreased again, they slowly decelerate to disappear
smoothly as- becomes smaller than 1. The rolls will always turn in the same direction. We
believe that it would be interesting to try to observe this delay experimentally.

4. Hysteresis in mean-field ferromagnets

Hysteresis in ferromagnets has been known and studied experimentally for a long time. Interest

in a microscopic understanding of hysteresis and associated scaling laws has been renewed by

the numerical study of [1]. The internal dynamics of ferromagnets, however, is so complicated

that its modelling by ordinary differential equations is not obvious. We will consider here a

simple Curie—Weiss model, which can be described by an effective mean-field equation.
Consider the Hamiltonian

1
H(o) = =52 Y (oildoj) = ) (hloi) (30)

i#jeA ieA
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whereA is a subset dZ¢ with N sites, the spins; are unit vectors iiR”, J is a fixed coupling
matrix andh the magnetic field. We introduce a stochastic spin—flip dynamics of Glauber type.
The detailed balance condition [18] is satisfied by a transition probability by unit time of the
form
w(o'lo) =Y 80} —ope’ @™ g (h;(0))
ieh j#Ai
1
hi(o) h+ ] Zaj
JF#i
whereg = T1is the inverse temperature, apth) an arbitrary function.
To derive a deterministic equation of motion, we consider a sequence of systems with
N sites,N — oo. Under appropriate assumptions on the initial probability distribution,
one can derive in the thermodynamic limit a deterministic equation for the magnetization
m = (), 0;)/N of the form?

(1)

d
5 = —m*BUm DBl Im +hl) (32)
whereF, (x) depends on the dimensiarof the spins. In particular,
tanh
Fix) = —— ) =1- A2+ 0. (33)

It can be shown that correctionsidr) resulting from a finiteV are of ordetN —%/2, and obey
a Langevin equation [19, 20].

We will now describe some interesting properties of the 1D and 2D models in a slowly
oscillating magnetic field, paying attention in particular to the mechanism of magnetization
reversal and its influence on the shape of hysteresis cycles.

4.1. The 1D case: dynamic phase transition

For 1D spins, the adiabatic equation of motion can be written ast

em = —m +tanhf(Jm + h(t)) (34)
where we will consider a periodic magnetic field of the form
h(t) = hosSin(2r 7). (35)

For positive inverse temperatuge= 71, we may rescale the variables in such a way that
J = 1. If B8 < 1, thereis no static hysteresis glIf> 1, the static bifurcation diagram is similar

to the equatiorex = —x + x% + A(7) discussed in section 2: it contains two saddle-node
bifurcations(xh., Fm.), where
me(T)=v1—=T h(T)=m,— Ttanh 1 m.. (36)

As we have seen in section 2, whigi>> k. orbits are attracted by a hysteresis cycle with zero
average magnetization (figurebBy and aread(0) + O(¢%3). This scaling law was already
obtained in [3]. Wherkg < h., the magnetization never sees any bifurcation point, and it
follows asymptotically a cycle of widttv (¢) with nonzero average magnetization (figura)h(

This phenomenon was observed numerically and called ‘dynamic phase transition’ by [7],
who also called ‘ferromagnetic’ ¢i-regionthe domain of 7', )-plane where the asymptotic

t This is the simplest equation, obtained for a particular choige @ther choices yield a multiplicative factor in
the right-hand side.

T We neglect here terms of ordestemming from the slow time dependencé:ai the derivation of the equation of
motion.
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Figure 5. Periodic solutions of (34) (light curves) illustrating the phenomenon of ‘dynamic phase
transition’. Heavy curves represent stable equilibria (full) and unstable equilibria (broken) of the
static equation. When the amplitudgof the magnetic field is smaller than the critical fiéld the
magnetization oscillates around a nonzero average, and encloses an area gfo(der When

ho is larger tharh,., the average magnetization is zero, and the periodic solution encloses an area
A(e) = A(0) + O(e%/3) (b).

cycle has a nonzero magnetization, and ‘paramagnetiE-mgionthe domain where it has
zero average magnetization. In the adiabatic limit, these regions are delimited by the line
h = h.(T). For positivee, there may be a small overlap between these regions, where a
symmetric P-cycle and an asymmetric F-cycle coexist.

We claim that for smalt andT = p~* < 1, the F-region grows by a distance of order
the P-region shrinks by an amount of the same order (but may overlap the F-region), and the
area of the corresponding cycles obeys the scaling laws

F-cycle: A(e, ho) = hoe if hg < h. ¢|lneg|if hg = h,
P-cycle: Ae, ho) ~ Ag +&?*(ho — he)*.
Let us indicate how we obtain these scaling laws. Assume/that h. + 5. After

translating the coordinates to the bifurcation pdinti., m.) and scaling them in a proper
way, equation (34) becomes

(37)

gy = —y? — § + v + higher order terms. (38)

For§ = 0, this equation displays a transcritical bifurcation at the origin. For positive
splits up into two saddle-node bifurcations, with a gap of widtfsZfigure 6). 1f§ < O(e),
the transformation = /8o, y = /&7 yields the equation

g_z = —52+8%0%-1 §=./8/¢ (39)
o

which can be used to show thatannot move enough to slip through the gap, so that we are
in the P-region.
If § > O(e), the transformation = v/5(c — 1), y = +/3z gives

d
((»28’1)—Z =—z2—o+0? (40)
do
which is exactly equation (12) studied in section 2. In particular, the trajectory slips through

the gap after a time delay of ordefs(¢61)%/2 = ¢%/35~1/%, During this time, the magnetic
field has reached a valug + O(£%/35/3), which implies the scaling relation (37).
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Figure 6. If the amplitude of the magnetic field is equalip = k. + 8, the motion near the turning
point is governed by the Riccati equation (38).51& 0, it describes a transcritical bifurcation,
and adiabatic solutions follow the upper branah (This means that we are still in the F-region.
For positives, we show that this behaviour subsists as long as O(¢). In (b), trajectories are
shown for two different values af. If ¢ < §, the solution escapes from below after a delay of order
£2/35=1/6 and we have reached the P-region.

Finally, when$ = ¢, the trajectory may behave in either way. A more careful analysis
of the Poincag map shows that even though there is a small region where stable F- and P-
cycles can coexist, the transition is sharp, in the sense that the average magnetization jumps
discontinuously from one cycle to another. In[7], a smooth transition, where the magnetization
goes to 0 continuously, has been observed for larger values of

4.2. The 2D case: effect of anisotropy

If we retain only the leading terms in (32), we obtain the Ginzburg—Landau equation

em = (BJ — Mym — 2BJm||BJIm| + h (41)
which describes the linearly driven, overdamped motion of a particle in a sombrero-shaped
potential. We shall assume thats parallel to an eigenvector of the symmetric matfixin
the subspace of this eigenvector, the equation reduces to the previously studied case, and a
minimal field amplitude:. is necessary to reverse magnetization. When the magnetization has
a transverse component, however, it can also turn around the potential maximum, for a much
smaller field amplitude. We are thus going to focus on this situation.

In the isotropic case, we may choase= 1 to obtain the equation

e = (B — Dm — 5°m|lm|* + Bh(z) (42)
where we take a magnetic fieldt) = (h1(t), 0), with h1(t) = hgsin(2r ). Itis useful to
write this equation in polar coordinates, with= (r cosg, r sing), to get

er = (B — Dr — 1833+ Bhy(v) cosp

. B . (43)
ep = ——h1(7) Sing.
r

If h1(t9) < O, the magnetization settles near the left equilibrium, determineg &y7 and
r = r:+(1o), the largest solution a8 — 1)r — 833 — Bh1(10) = 0. When the field becomes
positive, the phenomenon of bifurcation delay causés remain for some time in unstable
equilibrium nearr, until it switches to 0 at a time, = W (1g), defined by

W(70)
/ M@ 4 o, (44)
10 }"+(‘L’)
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Figure 7. (a) Evolution of ¢(t), solution of equation (43) (light curve, with the initial condition
marked by a small square). The magnetization quickly rotates at timeletermined recursively

by the relationr,+1 = 5 + W (z, — 3). (b) The plot ofm; as a function of; shows the asymptotic
hysteresis cycle, which is determined solely by the delay times. Heavy full curves, broken and dotted
curves represent respectively sinks, saddles and sources of the static system. Due to bifurcation
delay, the magnetization follows the hyperbolic branch for some time, but ultimately rotates around
the unstable origin.

Figure 8. (a) Evolution ofg in the anisotropic case with > 1. Due to bifurcation delay; spends
some time near O aot, even when these points are unstable. It always drops back, however, to
the transverse stable positiorb) (The resulting hysteresis loop looks triangular. Curves are the
longitudinal equilibria, and the straight line represents transverse branches.

Because of the symmetry, the next time of delayed magnetization reversal is then given by
Ty = % +W(r; — %) (figure 7). Subsequent reversal times are determined by the recursive
formulat, = 5 + W(z, — %). It turns out that thiself-determined bifurcation deldinally

settles at a fixed point of the map— ¥ (r) — %
We now tumn to the anisotropic case whefe=(;°)
(r cosg, y~1r sing), the second equation of (43) becomes

In the coordinatesn =

eg = (L — 1% (y — 1) sinp cosp — ghl(r) sing. (45)

The caser < 1is notvery interesting, since the anisotropy increases the effect of the magnetic
field, and tends to align the magnetization with it. f > 1, a new stable transversal
equilibrium exists for small magnetic field. Its coordinates are determined by the relations
I1BIm|?> = 21 — B~y and (1 — y~YH)m; = Bhi. The resulting hysteresis cycle is
composed of two triangular loops (figure 8), since after leaving the unstable pasitiobor
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P

Figure 9. Phase portraits in thgy, p)-plane of the rotating pendulum for different values of the
rotation frequencyR.

7, the magnetization drops to the transverse branch, which it follows until merging with the
longitudinal branch.

We point out that if the magnetic field is slightly tilted with respect to the eigenvectors
of J, the pitchfork bifurcations in figure 8 transform into saddle-nodes, which suppresses the
bifurcation delay. The result is that instead of oscillating back and forth, the magnetization
performs full circles, always rotating in the same direction.

5. Chaotic hysteresis of a rotating pendulum

The examples we have considered up to now all described an overdamped, effectively 1D
motion, which displayed hysteretic, but not chaotic properties. We present here an example
taking into account inertia, which turns out to have far more complicated dynamics.

Consider a mathematical pendulum mounted on a rotating table, turning with angular
frequency2. The pendulum is subject to weight, friction and a centrifugal torque, so that its
equation of motion can be written in dimensionless variables

q=7r

p = —2yp —sing + 2?sing cosg (46)
whereg is the angle between pendulum and vertical, ansl 0 is a friction coefficient. This
equation also describes the motion of a particle in a symmetric potential, shaped as a single
well whenQ < 1 and as a double well whel > 1. The originO is always an equilibrium,
while for @ > 1, two new stable equilibria appear at

0+ = (£47(22),0) g*(Q) =cos Q2 (47)
The eigenvalues of the linearization of (46) arouménd Q. are given, respectively, by
al =—y£/P2+ 2 -1 ot =—y £y -2+Q2 (48)

There are four qualitatively different phase portraits, delimited by the values 1 and
Q = Qi(y), where

QP =1-y2 Q) =}[r?+/y7+4 (49)

namely (see figure 9):
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Figure 10. Solutionsg (7) of equation (50) for slightly different values of the adiabatic parameter
¢. The time scale has been contracted in such a way as to show 20, resp. 40 pefidSmné
observesd) solutions with the same period th@1z), (b) solutions with twice the period &&(7),
going alternatively to one side and the other one, ahdf(s is carefully adjusted, solutions which
have no apparent period.

e when 0< Q < Q_(y), O is a stable focus;

e whenQ_(y) < Q < 1, O is a stable node;

e when 1< Q < Q.(y), O is a saddle an@.. are stable nodes;
e whenQ > Q.(y), O is a saddle an@.. are stable foci.

If @ = Q(er) is made slowly and periodically time-dependent, we obtain the adiabatic
system

eq=p

. . . 50
ep = —2yp —sing + Q(1)?sing cosg. (50)

This system displays two interesting phenomena. The first one is a bifurcation delay similar to
the one already observed in previous examples: vihenincreased beyond 1, the pendulum
remains for some time in unstable equilibrium close to the origin, before joining one of the
stable equilibriaQ. or O _. Wheng is decreased again below 1, the pendulum follows this
equilibrium until it joins the origin, leading to hysteresis. The second interesting phenomenon
is related to the sequence of visited equilibria, which depends on the value of the adiabatic
parameter (figure 10). For some values, the pendulum always chooses the same equilibrium,
just as the Lorenz system always chooses the same direction of rotation for the convection
rolls. For other values of, however, one observes a sequence with twice the driving period,

in which the pendulum visits alternatively the equilib@la andQ_. Between these periodic
behaviours, it is even possible to observe apparently random sequences, which we called
chaotic hysteresif8].

In order to explain this behaviour, we now compute an asymptotic expression for the
Poincaé map in the(g, p)-plane, during one period &2 (7). If Q(t) remains within the
interval [2_, 2], the system can be reduced to 1D as in section 3, and there is no possibility
for chaotic motion. We thus consider the case whe(e) has a larger amplitude (figure 11).

It is useful to introduce the notations

2]

2
a’(10, 11) = Re/ al(r)ydr  ¢°(12, 11) = Im/ al(r)dr. (51)
T1 1
Similar functionse* and¢* are defined for the linearizations arou@d..

Assume the origin becomes stable at the timgure 11). Forf < t < 1, orbits are
attracted by the stable origin. They remain close to it until a bifurcation delayttihedefined
by the relationn’(z + 1, 7) = 0. During this part of motion, the system can be essentially
described by its linearization around the origin. Except in a neighbourhoog], efhere the
eigenvalues cross, we can carry out a dynamic diagonalization as in section 3. The actual
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Figure 11. Functionf2(z) considered in the analysis. The instants wketrosses the value3..
and 1 delimit the different phases of the motion: the origin becomes unstabte 8tand stable at
T = 1, itis a focus forr betweerr® andz?; each equilibriump. andQ_ is a focus forr between
t* andt}. The situation is repeated periodically with a period of 1.

crossings are described by a local analysis, using Airy’s equation. Combining these steps, we
obtain that

cos((ﬁ;) e %/¢ sin <¢— +(92”>
x(F+1) =SE+1) ¢ & ¢ S@)x(%) (52)
—e /% sin (— + 91”) e %/¢ cos(— + 9§>
&

o

&
whereg® = ¢° (2, %) + O(e) is the dynamic phase of oscillations around the origin, and the
columns ofS(t) are close to the eigenvectors associated with the origin. The positive factors
&7 describe the asymmetric contraction due to the difference betwfeanda?, and thes?
are geometric phase shifts. It can be shown that the effect of nonlinear terms can be absorbed
in these small geometric corrections.

The part of motion betweehandz is essentially nonlinear. Near the origin, we may use

invariant manifolds as in section 3 to transform (50) into

ek =[al(t.8) + (£, 1. T, 0)]&

en =[a’(t,e)+B_(§,n.7,8)]n
whereal (z, ¢) = al.(r) + O(¢) andB,. are of ordeé| +|n|. Starting at with a small initial
condition(&y > 0, ng), the second equation in (53) shows thétecomes exponentially small.

The first one is used to prove thateaches a distaneefrom the origin ¢ not too large) at a
time 7 (&) + O(e), where

@’ (T(&o), T) = —¢eIn(&o/d) (54)

providedsy > & = e "% 9/¢ (for smallersy, the orbit does not reaafl. before the time?).
Fort > 7(&), the trajectory is attracted bg., around which we carry out a similar analysis
than around the origin, with the result

(53)

E(F) = CeVh+ e/t cos<—>
&

n(¥) = e“ 7 sin <¢— + 9*)
&

wherea* = a*(7, T(&)) + O(J¢e) and¢* = ¢*(zF, T(&)) + O(J/¢), while C, §* and6*
are constant at lowest orderdn The position at thus depends essentially énthrough the
delayed bifurcation timé& (&), in such a way that (55) is the parametric equation of a squeezed

(55)
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Figure 12. Schematic shape of the functido(£) of equation (56)&) when co$¢®/¢) is sufficiently
positive and §) when co$¢?/¢) is sufficiently negative. In the first case, there are two symmetric
stable fixed points. In the second case, there is a stable orbit of period 2.

spiral (which is essentially the image of the unstable manifold of the origin under the flow
from 7 to 7).
Combining this result with (52), we finally obtain a Poineanap of the form

&1 = T (505 no, €) = COS(%) [Csl/“ + e/ cos(%)}
+e"=9/¢ sin (ﬁ + 9") sin (ﬂ + 9*) (56)
&

&
m = Ta(£0; no, €) = O(e7% /¢)

whereé; = £(7 + j) measures the distance to the stable manifold of the origin (it is close to
q), andn; = n(f + j) measures the distance to the unstable manifold. This expression is valid
for & > 0, but is easily extended to negatigg since the Poincérmap is odd. The dynamics

is thus essentially determined by the 1D nggp—~ T1(%o; 0, €), which is oscillating around
+Cel/4 cos(%”) (figure 12). One easily shows the existence of a positive congtasnich

that, if e¥/4 cog¢°/¢) > e /¢, this map admits stable fixed pointsigg* ~ +¢1/% cog¢°/¢),
corresponding to cycles of period 1. Whetf cog¢?/s) < —e */¢, there is an orbit of period

2, for which the pendulum alternatively visits the left and right equilibrium (figure 12). These
properties can be shown to hold for the full 2D map (56), which is confirmed by numerical
simulations (figure 13).

Chaotic motion is possible in the intermediate regions, wherécog¢®/e)| < e /¢,

For the 2D map, it is difficult to prove existence of such a motion, but one can do more for the
simplified 1D map, using symbolic dynamics. In fact, when(@égs) = 0 and under certain
conditions or2(t), one finds thaf; (§) behaves as in figure 12 it vanishes at two points

& andé&,, and, being odd, also até; and—&,. These points define four intervals,, 1_1,

I, andl,, and the maximum of; on I is larger tharg,, while its minimum on/; is smaller
than—&,. TheMarkov graphof 7 is defined as the graph with sités admitting an oriented
edgel; — I wheneverTy(I;) D I. Itis known [21] that for every path in the Markov
graph, there exists an orbit visiting the corresponding sequence of intervals. In particular,
using Sarkovskii’'s theorem [21], it is possible to prove the existence of periodic orbits of every
period except possibly 3.

The mathematical pendulum analysed here has been realized experimentally, and all the
phenomena predicted by the equations have been observed. They depend, in fact, only on a
few qualitative features of the system. The origin should be a focus for some values of the
parameter, in order to allow the orbits to wind around it. It should be hyperbolic for other
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Figure 13. (a) Numerically computed bifurcation diagrams of the Poigcarap (56). For each

value ofe, we have plotted the asymptotic valuegft + n), for oneinitial condition. On the
domain 0< ¢ < 0.025, the diagram clearly shows the alternates of regions with a one-period
and a 2-period cycle, separated by small chaotic zor§PIts of the functions/4 cog¢? /¢)

and+e #/¢. Light grey zones are those where the theory predicts existence of a period-1 cycle,
medium grey zones those with a period-2 cycle. Dark grey zone are those where chaotic hysteresis
is possible, and, indeed, observed. We point out that in figa)rel{e dynamic phase’(0) has

been computed analytically. Only the next-to-leading-order correctigf(o (which results in a

phase shift) has been chosen in order to fit the numerical results.

values of the parameter, for which two new stable equilibria should exist. Chaotic motion
requires, in addition, these asymmetric equilibria to be sometimes foci, in order to create the
oscillations in the Poincarmap. Under these conditions, it should be possible to observe
chaotic hysteresis for other nonlinear oscillators (see section 6.2).
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Figure 14. The interval mapd) admits the Markov subgrapb) which allows for periodic orbits
of all periods, except possibly 3. The intervéjsand/; are connected by an arrow in the Markov
graph if the image of ; containsl;. Each path in the graph describes a possible orbit.

6. Examples of eigenvalue crossings

We mentioned in section 3 that adiabatic linear systems of the farme= A(t)x could be
diagonalized (and thus solved) by the change of variablesS(z; )y, whereS is a matrix
satisfying the equation

eS=AS—SD (57)
and D(r) is a suitable diagonal matrix. Then the linear system takes the simple form
ey = D(t)y, which can be solved. This procedure is only useful, however, if we manage to
control the transformation matri, which should be bounded (e.g. close to the maic)
which diagonalizes statically). Such a control turns out to be possible at least in two cases:
when the eigenvalues of(t) have different real parts, or, (in a more restricted sense) when
they have the same real part but different imaginary partst.

This leaves open the question of the effect of different types of eigenvalue crossings. The
most generic case, whefi is not diagonalizable at the crossing time, has been mentioned
in section 5. It can be studied using the properties of Airy functions (see also [9]). In this
section, we illustrate the effect of two other types of crossing. The first one occurs when
A(t) is symmetric, and can thus be diagonalized even when it has identical eigenvalues. The
second one arises when the eigenvalues’ real parts cross, but their imaginary parts are different.
We call this situatioreigenvalue cruisingit is closely related to properties of dynamic Hopf
bifurcations discussed in [11, 12].

6.1. Symmetric crossing

Let us consider the overdamped motion of a particle in the 2D potential

D (x, &) = —5(x|A(enx) + Zlx]* (58)
whereA is a symmetric matrix. The equation of motion can be written
ex = A(T)x — ||x|%x. (59)
We assume that the matrik(t) is given by
_ cosd(r) sSinH(r)
Alr) = a(®) (sin D (1) —cosﬁ(r)) (60)

T More generally, the system can be bloc-diagonalized when the eigenvalues can be split into two groups with
non-crossing real parts.
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Figure 15. Solutions (light curves) of (62) whan(t) = — cosr: (@) in the cas#(r) = — cost,

(b) in the cas®(r) = . In both cases, one can construct a particular solution remaining close
to the static equilibriun®(z) (heavy curves, where the full lines indicate stable branches and the
broken lines unstable ones), admitting a discontinuity at 37” Solutions of (63) behave in a
similar way, with a discontinuity at = 7.

so that it admits eigenvaluesa(r) and eigenvectors; = (cosd,sind) and v, =
(—sing, cosp). Thus, the potentiab has minima at:./a v, if a is positive, and at-/—av»
if a is negative. To diagonalize the linearized equatien= A(t)x, we may try to solve
equation (57) with matriceS and D of the form

costi(t) —sinbx (1) _ [ di(v) 0
o (sin@l(r) C0SH, (1) > D_< 0 dz(t)>' (61)

Substitution of this ansatz in (57) yields the relations
g1 = —a(t) sin 26, — 6(1)) d1(t) = a(t) cos A6, — (1)) (62)
g6, = a(z) Sin 26, — O(7)) do(t) = —a(r) cos A6, — 0(1)). (63)

If a(r) does not vanish (i.e. when there is no eigenvalue crossing), these equations admit
equilibrium branches a; = 6, = 6(z), of opposite stability. By the results of section 2,
we know that they admit particular adiabatic solutidhér) = 6(t) + O(e) and b (r) =
0(t) + O(e). The evolution operator of the linearized system can thus be written
1(t,70) /¢
U(t. 10) = 8(1) (65 0 e@ﬂfm)/g) S(ro) ™
. . (64)
81.2(T, 1) :f dyo(s)ds = j:/ a(s)ds + O(£?).
0 70

The columns ofS(7) can be considered aynamic eigenvectomshich are close to the static
eigenvectorsy ». They define invariant subspaces (depending)rin which the motion is
expanding (respectively, contracting).

Whena(7) is allowed to vanish, new phenomena occur because equations (62) and (63)
undergo bifurcation. It is instructive to consider the caée) = — cosr, for three different
functionsé(t) : (1) 6(r) =0, (2)0(r) = —cost and (3)(t) = .

If 6(r) = 0, (62) admits the solutioty = 6, = 0, anddy 2 = ta(r). The evolution
operator can thus be written

e sin(t)/e 0 )

U(t,0) = ( 0 e (65)
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Figure 16. Solutions of (59) whem(r) = — cosr, plotted with respect to the rotating reference
frame(v1, v2). The initial condition is marked by a small square) If the cas#(z) = — cost,

the particle oscillates back and forth between two potential wells, whiile the case (t) = t it
visits all four wells in a row.

The subspaces; = 0 andx, = 0 are invariant. Ifx2(0) = 0, x1(t) remains exponentially
small untilt = 7, which is the standard bifurcation delay.

If 6(t) = — cosrt, itis not possible to construct solutions of (62) remaining indefinitely
close tod(t). The best one can do is to construct periodic solutias) andd, (r) admitting
a discontinuity of ordek/e, respectively at timeézz and 7 (figure 15@)). As a result, for

Z <7 <% wehave

eh(r.m/2)/¢ 0 eh(7/2,0)/e 0 B
U(z,0) = S(r) ( 0 eSz(T.Jr/2)/€> T ( 0 eSg(n/Z,O)/s) MO (66)
where

(TN _(1+0(/e) sinb; —6,) +O(e)

r=s(3+) (5= ("G i ")

with Bzi = 62(5%). The off-diagonal term of this matrix induces a transition between the
directions which were invariant before= 7. In particular, whenr =, we have to leading
order ine

g e, (68)

U(r, 0) ~ ( 0 1

This transformation rotates the vertical axis by almeA2. The matrixU (2, ) is found to
rotate the horizontal axis by almostr /2. This means that there exists no invariant subspace in
which the particle performs an independent motion. The eigenvalue crossing thus results in an
interaction between both modes, with the particle always following the most unstable direction.
The sign of the discontinuities @k » is important: in this case it induces a back-and-forth
oscillation of the particle between two wells (figure &(

In the cas&(r) = t, the situation is similar, but with a discontinuity ef of opposite
sign (figure 15)). As a result, the coordinate axes are always rotated in the same direction,
and the particle visits all four wells in a row (figure by

6.2. Coupled oscillators and eigenvalue cruising

We calleigenvalue cruisinghe situation arising when some eigenvalues of the maltlift
past one another at some imaginary distance. This cruising also leads to an interaction between
the modes; however, unlike in the case of diagonal crossing, this interactietaiged
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Figure 17. Eigenvalues of the linearized Kobayashi equationsyfoe= 2, y» = 1 andu = 0.
There is an eigenvalue cruising for= —2.

Eigenvalue cruisings appear in particular in coupled oscillators. Consider for instance the
system

G1+2ngi+ (L= A+qf +495)q1 — pg2 =0
Ga+ 2y2g2 + 44— A+ qf + 495)q2 + uq1 =0
which was introduced by Kobayashi [22] to describe the vibrations of a buckled plate with
supersonic flow on one side of the plate. The variableandg, are amplitudes of the two
dominant Fourier modes of the deflectiaris the in-plane compressive stregghe dynamic
fluid pressure of the supersonic flow, ang are friction coefficients (which were taken equal
in [22]).
Introducingp: = g1 and p> = g3, (69) can be written as a 4D first-order system for the
variables(qi, p1, g2, p2), which admits the origin as an equilibrium. The linearization around
the origin is a 4x 4 matrix with eigenvalues

arx = —y1 £y +1—1+0u?) 70)
aps = —y2k\[yZ+40. — 4+ O(ud).

An eigenvalue cruising arises for instance in the following situation: assumae2,y, = 1
andu = 0,sothas; + = -2+ /A +3 anday+ = —1+£i/15— 4). Asa increases from
—3to 175, the complex eigenvalues .. correspond to oscillations, while the real eigenvalues
a1+ describe an overdamped motion. There is a cruisirg-at—2 and the origin becomes
unstable ak. = 1 (figure 17). The same qualitative features hold for small positive coupling

uw.

(69)

We are interested in the following question. Assume tha increased monotonically
and adiabatically, starting with a generic initial condition at a tugyehere is smaller than
1. For what value of does the trajectory depart from the origin? The answer turns out to
be related in a rather subtle way to bifurcation delay and eigenvalue cruising. It is easier to
explain this phenomenon on the simple model equation

0 ) ap(r) = -1+t

ax(t) = -1+ (71)

ex = A(D)x  A(T) = ("1(;) o)

As in Kobayashi’s equationg; represents the overdamped mode, anthe oscillating one

(in complex notation). The cruising occursmat= 0. To diagonalize this equation, we try to
solve the equationS = AS — SD with the ansatz

0= ( ) o= (4 ,8,)
Substitution in the equation & yields the relations
51 = —p — (T —i)sy — pus? dy = a1+ usy (73)
esp=p+(t —i)sp+ ;Lsg do = ap — usy. (74)
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Figure 18. (a) The level lines of the function Re(z) of equation (75) are hyperbolas centred at

v = i. The largest positive time which can be connected to the negative real axis by such a line
is the buffer timer, = 1. (b) The origin becomes unstable when the largest exponent of a matrix
element of the evolution operator (77) becomes positive. This may happen earliegwveh
because the oscillators effectively interact at the buffer time.

The first equation has a static equilibriumstr) = —p /(v — i) + O(u?), which is unstable
for t < 0 and stable for > 0. One can show that the solution of (73) with initial condition
51(0) = 57(0) tracks the brancky (r) at a distance at moét(¢), for both negative and positive
times.

The second equation has a more subtle behaviour. It admits an equilibrium branch at
s5(t) = pu/(r —i)+ O(u?), which is stable forr < 0 and unstable for > 0; in fact, it
undergoes Hopf bifurcation. Such bifurcations have been studied by Neishtadt [11, 12, 23].
The interesting fact is that there exist solutions tracking the equilibrium branch beyond the
bifurcation point, but only until a time callechaximal delayor buffer point This point is
obtained in the following way: lei(r) =  — i + O(u?) be the linearization of (74) around
the equilibriums;(t). Define the function

Reua(t) = Re/r a(s)ds = I[(Ret)® — (Im7 — 1)? + 1] + O(u?). (75)
0

The buffer timery, is the largest real time which can be connected to the negative real axis by
a path of constant Re (and with some additional properties given in [23]). In the present
situation,z, = 1 (figure 184)). As a consequence, fer< 1, we can construct a solution of
(74) which is close ta3(z), and the evolution operator of (71) is given by

gh(r.0)/e 0 _
Uz, 7o) =s<r>( 0 eﬁ\z(r,rc,)/g)S(ro) !

81(1, 10) = / di(s)ds = 3(z% — 1) — (r — 0) + O(1?) (76)

To
T
82(t, 10) = f da(s)ds = (i — D)(r — 10) + O(u?).
70
Fort > 1 > 10, however, the solutiom(r) necessarily admits a discontinuity of ordegr
at the buffer time. A similar calculation as in the previous subsection yields the evolution
operator

gh@)/e (g )edi@ DL 0)]/e _
U(z, o) = S(r)( 0 e o(r.)/e S(ro) ™. (77)

If the system starts away from the origirrgt< 0, it will follow the origin exponentially closely
until adelay timef, which is the first time at which one of the matrix elements becomes of order
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1 again. Ifu = 0, we simply have = 2 — 19. Whenu # 0, however, we cannot overlook the
interaction between the overdamped and the oscillating mode, which takes effectively place at
the buffer timer, = 1, and may cause the system to become unstable at an earlier time. For
instance, wheng = —2, the usual delay time fq = 0 would bet = 4, while the effective

delay time foru > 0is 1 ++/6 + O(u?) (figure 18b)).

A similar phenomenon is observed for the Kobayashi equations (69), only with different
values of the cruising, buffer and delay times. The effective value of the bifurcation delay
can be shown to depend at leading ordes omly on the linearization around the origin. It is
important, together with nonlinear terms, for the global structure of motion, since it influences
the choice of the asymmetric equilibrium the system follows after leaving the origin. In fact,
for large amplitude oscillations of the forir(z) = 8sin(r), we observed numerically that
the Kobayashi equations display chaotic hysteresis just as the rotating pendulum in section
5. This is not really surprising, since even when= 0, each oscillator is similar to the
rotating pendulum if the amplitude afis large enough. A positive, however, will modify
the bifurcation delay and the dynamic phases and amplitudes which determine the structure of
the Poincag map.
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